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The stability of weakly non-uniform flows is investigated by the WKB method. Reflecting and 
refracting wave boundary conditions on the Stokes lines are considered. Approaches to analysing the 

situation when the turning points do not lie on the real axis and the eigenfunctions are fairly complex 

are discussed. 

As an example, the instability of transverse oscillations of a weakly inhomogeneous tube conveying a 

liquid is considered. It is established that under certain conditions a growing oscillatory mode can 

emerge; it represents a chain of four waves if the convective instability condition is satisfied, while the 

local condition of absolute instability is not satisfied at any point. A qualitative analysis of the 

conditions is carried out in terms of frequencies and wave numbers. 

A “GLOBAL STABILITY CRITERION” has been presented in a number of papers [1, 21 and used to 
investigate specific flows. This criterion is based on finding an eigenfunction associated with 
the presence of a multiple turning point in the complex plane (and in more detailed 
considerations, with two close turning points). For such an instability there is a section on the 
real axis where a local absolute [3] instability condition is satisfied. The same criterion was 
obtained by another method in [4] by considering the development of non-stationary 
perturbations as a case of one of the possible scenarios of the transition to instability. 

Note that the term “local” is more appropriate for an instability associated with the growth 
of a perturbation representing two waves blocked by two close turning points. The term 
“global instability” was used previously [3, 51 when considering the stability of uniform flows 
with boundary conditions at the ends of a long interval. This term denoted the existence of a 
growing perturbation, consisting of a set of waves, two of which pass through the entire 
interval and are reflected at both its ends (as distinct from boundary or one-sided instability, 
when the perturbation evolves around one end of the interval). 

Many papers on the stability of weakly non-uniform states and flows (for example, [6-S]), 
have explained that perturbation modes responsible for the transition to instability are chains 
of waves with different wave numbers that transform into one another. 

A similar result was obtained [9] in an analysis of general criteria for eigenfunction 
formation in weakly non-uniform flows when points are present on the real axis at which 
arbitrary boundary conditions are inserted. It was assumed [9] that the wave reflection and 
refraction coefficients specified by the boundary conditions are finite, i.e. have a finite limit as 
the length-scale tends to infinity. If the boundary conditions are associated with the Stokes 
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phenomenon [7, lo], i.e. with discontinuous variation of the coefficients in the WKB 
representation of the solution, then the possibility of applying the result obtained in [9] needs 
some clarifications if the corresponding turning point does not lie on the real x axis. These 
clarifications are given in Sec. 1. 

In Sec. 2 the problem of the transverse oscillations of a weakly non-uniform tube conveying 
a fluid is considered. Unlike the situations considered in [l, 21, the oscillation mode 
corresponding to growing perturbations is a chain of four waves, and the local condition of 
absolute instability is not satisfied anywhere. It is also interesting to note that the formation of 
the eigenfunction in this example is not associated with the joining of anti-Stokes lines (“level 
lines”) of different turning points, as is sometimes the case for second-order equations and in 
some other situations [6,7,11]. 

1. In stability investigations one can in many cases assume that the time-dependence of the 
perturbation has the form (iot), after which the study of small perturbation behaviour reduces 
in ,typical situations to the study of boundary-value problems for a system of ordinary linear 
differential equations. If the coefficients of a linear uniform system of ordinary differential 
equations depend on x/L, where the length-scale L of the range of variation of x is assumed to 
be large, then over finite ranges of variation of x the general solution, according to the WKB 
method [7, lo], can be represented as a linear combination of elementary WKB solutions with 
coefficients C, 

(l-1) 

Here &,,(a, x/L) is a branch of the multivalued function k(o, x/L) defined from the 
dispersion relation <p(o, k, xl L) = 0 of the system under consideration, in which the variable 
X/L occurs as a parameter. 

As in [9], we shall assume that there is (or that it is sufficient to consider) just a finite number 
of branches k,,,(w, x/L) (m = 1,2,. . . , N), as is the case for solutions of differential equations. 
Moreover, we shall assume that for all w of interest, there are only isolated branch points for 
the function k(w, x/L) in the complex x plane. For every specified m the vector A,(xl L) (with 
the number of components equal to the number of unknowns) is found by the WKB method in 
the form of an asymptotic series [lo]. 

For solutions of the differential equations, there is not in general a single asymptotic 
representation of the general solution of the form (1.1) for the entire real x axis or for the 
entire complex x plane. One can, for example, recall that an asymptotic representation (1.1) 
can be obtained for every section of the real x axis in which the imaginary parts of all the roots 
of kj(w, x/L) are different [lo]. In the complex x plane the discontinuities in the asymptotic 
representations are specified on certain lines called the Stokes lines. 

The Stokes lines emerge from the turning points, which are defined as the branch points of 
the function k(w, XlL) in the complex x: plane for given w. Below, for simplicity, we shall 
consider simple turning points, at which for the given w the values of two wave numbers are 
the same: k, = k,. We shall assume as usual [7, lo] that in a neighbourhood of such a point 
there is significant interaction only between those elementary WKB solutions corresponding to 
k, and k, (their interaction being resonant at the turning point), and that it is independent of 
the other elementary WKB solutions. This means that in the neighbourhood of the turning 
point the branching WKB solutions behave in the same way as solutions of an equation (or 
system of equations) of the second order with a dependence k(w, x) approximating in this 
neighbourhood the branches k,(w, x/L) and kq(w, x/L). Here from the branch point x = A 
three Stokes lines emerge inside each of the sectors, in which 



On the stability loss of weakly non-uniform flows in extended regions 853 

On each Stokes line a discontinuity occurs in the coefficient of the term in (1.1) containing 
the smaller (in absolute value) exponent among those corresponding to k, and k,, where we 
have put x0 = A, and the magnitude of the discontinuity is proportional to the coefficient of the 
term with the larger exponent. 

Thus, in the neighbourhood of the point A, in different sectors there are different asymptotic 
representations of the solution for the transition from one sector to another. C, and C, are 
related to one another by linear relations with finite coefficients (the Stokes coefficients) 
[7, lo], if as a lower limit of integration in the exponents in (1.1) we take the turning point 
x,=A. 

If there are turning points not lying on the real x axis, one can try to deform the x axis so that 
the new curvilinear x’ axis passes through the turning points which have to be taken into 
account when constructing the solution. The above-mentioned relations with finite coefficients 
are specified at each of these turning points in the form of boundary conditions linking 
solutions on both sides of the x’ line with respect to the turning point. This is the normal 
procedure in the case of second-order equations and in many other cases [6,7,11]. 

In order to use this method to construct a solution, one must be able to deform the x axis in 
such a way as to obtain a line that does not intersect any Stokes lines emerging from any 
turning points except at the turning points through which it passes. If such a deformation of 
the x axis is possible, one can use the procedure presented in [9] to construct the eigen- 
functions, and we do this below in Sec. 2. 

2. We consider, as an example of instability with growing perturbations consisting of more 
than two elementary WKB solutions (“waves”), the instability of a tube with fluid flowing 
through it, appearing in the form of transverse oscillations. The transverse displacement of the 
tube W(X, t) along the direction of one of the coordinate axes orthogonal to the position of 
the unperturbed tube axis, taken to be the x axis, satisfies the equation [12] 

(2.1) 

Here P1 and p2 are the mass of the tube and fluid per unit length, -Fiv is the elastic restoring 
force, and D is the bending stiffness of the tube. The oscillations described by these equations 
were studied [12-141 for the case of a homogeneous tube when all the coefficients in (2.1) are 
constants and F =O. It was shown [14] that when p11P2 > l/8 the instability is absolute, while 
for PI/p2 <l/8 the instability is convective. It was also shown that when the convective 
instability criterion is satisfied the global instability criterion in the sense of [S] is satisfied, i.e. 
for boundary conditions of general form, imposed at the ends of a fairly long tube, a growing 
mode of fundamental oscillations occurs, associated with the passage of bending waves along 
the entire tube and their reflection from its ends, 

Here we consider the case of an inhomogeneous tube with slowly varying parameters and we 
show that under certain conditions a mode of growing oscillations, in the form of a chain of 
four waves, can emerge when the local convective instability condition is satisfied at every 
point. 

We write the dispersion relation corresponding to (2.1) in the form of a solution for w 

o=n,,,(k,x)=ukTJ 

p= p1p2u2 @A, R= F 
(Pr +Pz12 ’ PI +P2 PI +P2 

(2.2) 

We first assume that Q = A + Bx*, that U, P, R, A and B are positive constants, and that apart 
from U they are all sufficiently small. 
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FIG. 1. 
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FIG. 2. 

The dependence of o on real k and x is odd. Suppose that at x = 0 it has the form shown in 
Fig. 1. In this case, all six branch points of the function k(w) correspond to real values of 
O=+CIJ (i= 1, 2, 3). This means that the plot shown in Fig. 1 ensures the satisfaction of the 
local convective instability criterion. As x increases the plot of o(k) changes, with o, 
increasing and w, and o, decreasing. For some values of x the branches of the plot merge, and 
then o, decreases to negative values: Here, of course, the local absolute instability condition is 
not satisfied for any X. 

The dependence of Im q(k, 0) on complete k is characterized by Fig. 2 which shows the 
lines Im L+(k, 0) = 0. The plus and minus signs indicate the domains of positive and negative 
Im R,. The numbers l-4 in Figs 1 and 2 denote the branches of the function k(o) in such a way 
that as Im CJI + = the quantity k,,,(w) tends to infinity whilst staying in the mth quadrant of the 
complex k plane. Thus 4 and k, correspond to waves propagating to the right, and k3 and k, 
to waves propagating to the left. The bold lines along the real axis in Fig. 2 depict cuts along 
which Im R, is discontinuous. For the second branch o =&(k, 0) we have the equality Im 
R,(k, 0) = Im Q(-k, 0). 

One can verify that from the branches of the function k(o) only the k,(w) branch with Im 
o > 0 has values with imaginary parts of different signs. This means that only this wave with 
Im o> 0 can experience exponential growth in the direction of its own propagation in 
accordance with the presence in the solution of the factor exp[i]k,(o, E,/L)dE,]. For all o with 
Im o > 0 all the remaining waves experience spatial damping in their direction of propagation. 

Hence the chain of mutually transforming waves, necessary [9] to form the eigenfunction 
when Im o > 0, can exist only for 61 corresponding to values of k from domain 1 in Fig. 2. One 
can verify that the above domain of variation of o contracts into a point when the difference 
o, -0, tends to zero, this difference depending on the values of constants occurring in the 
statement of the problem. If the quantity w, -61, is small, the segment of the real x axis along 
which amplification of the kl wave occurs is small, and the quantity Im k(w, x) is also small on 
this segment. 

It follows from the above that if o, -w, is small, one can expect the formation of growing 
eigenfunctions with very small Im o. Hence, we first consider the propagation of waves 
corresponding to real o in the interval w, c o CO,, because only for these values of w can a kl 
wave experience spatial growth. In this case, the turning points lie on the real x axis. For small 
x these will be points corresponding to either 4 or A, in Figs 1 and 2 at which kl = k,, while 
for finite x (i.e. not connected to the smallness of the difference w, - w,) these will be turning 
points corresponding to the point A3 in Fig. 2 at which k, = k4. Figure 3 shows the x axis with 
two pairs of symmetrically situated turning points A& A, and Al, 4,. The wave numbers of 
waves propagating along the corresponding intervals of the SC axis are shown above and below, 
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F~3.3. 

and the arrows indicate the direction of propagation. Outside the section A;A, the waves 
corresponding to k, and k4 experience exponential damping, and they are not shown in Fig. 3. 
Consider the interaction of waves propagating to the right, corresponding to k, and k, 
in a small domain in the complex x plane that includes the points 4 and A,. The 
Im I[k,b, SW-k,@, WI& contour lines are shown in Fig. 4 with Im w = 0. At the point 
Ai the k, wave for xc A; changes, with finite non-zero coefficients, into waves corresponding 
to complex k and k, in the A,’ <xc A, domain, the former being amplified as x increases, and 
the latter weakened. At the point A2 these waves are transformed into waves with real kl and 
k,, which propagate to the right of 4. If in the left half of the neighbourhood of A2 one 
neglects the damped k, wave, then to the right of 4 the amplitudes of the two waves can be 
assumed to be equal. 

Thus, as a result of passing through the section A;A,, the k, wave experiences spatial 
amplification, with the dominant part of the amplitude variation of the wave being given by the 
quantity 

exp -- Im . f k, (a,,( / L)d( Y 1 
In this process a k, wave is generated, which, without interacting with other waves, then leaves 
the section [A;A,] and will be ignored. The k,, k4 wave system reflected from the points A3 
and 4 is amplified in the section 4A, for o, < w c 0,. The length of the section A& is, by 
assumption, much smaller than the length of A,‘A,, and the spatial wave amplification index 
corresponding to k, is also small, while for small Im w > 0 the remaining waves experience 
spatial damping proportional to Im o Hence it is easy to select a small Im o > 0 so that the 
total net amplification and damping in the k,, k,, k,, k, wave chain cancels out, thus, making 
the construction of an eigenfunction possible. 

It is obvious that the existence of an eigenfunction in the case under consideration is 
associated with the presence of all four turning points. If, when the points Ai and A3 exist, one 
varies the values of the constant coefficients in the dispersion equation, then instability arises 
when the local convective instability condition is satisfied in the neighbourhood of x = 0 
together with the appearance of the points 4 and A, on the real x axis. Here the growing 
fundamental oscillations occur immediately in the finite section AiA, and consist, as has 
previously been stated, of four waves. 
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For other dependences of Q on x the turning points A; and A, can be complex for real o 
and do not give rise to effective reflection conditions for k, and k4 waves (for example, when 
Q = A+Bexp(-x*/L.*), the points A; and A, can lie on the imaginary x axis). In this case, 
instability does not occur when the section A;A, appears on the real x axis with the local 
convective instability condition. 

We note in conclusion that effects associated with the non-analyticity coefficients of the 
equations have not been considered in this paper. 

This work was supported by the Russian Fund for Fundamental Research (93-013-17355). 
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